Building some symmetric Laguerre-Hahn functionals of class two at most through the sum of symmetric functionals as pseudofunctions with a Dirac measure at origin
نویسندگان
چکیده
We show that if v is a symmetric regular Laguerre-Hahn linear form (functional), then the linear form u defined by u = −λx−2v + δ0 is also regular and symmetric LaguerreHahn linear form for every complex λ except for a discrete set of numbers depending on v. We explicitly give the coefficients of the second-order recurrence relation, the structure relation of the orthogonal sequence associated with u, and the class of the linear form u knowing that of v. Finally, we apply the above results to the symmetric associated form of the first order for the classical polynomials.
منابع مشابه
Perturbations of Laguerre–Hahn class linear functionals by Dirac delta derivatives
Se estudian perturbaciones de funcionales lineales (tanto en la recta real como en el ćırculo unidad) que pertenecen a la clase de Laguerre–Hahn. En particular, se obtiene una expresión para las funciones de Stieltjes y Carathéodory asociadas con los funcionales perturbados y se muestra que se preserva la clase de Laguerre–Hahn. Finalmente, se discute que bajo la transformación de Szegő la clas...
متن کاملMultilinear forms which are products of linear forms
The conditions under which, multilinear forms (the symmetric case and the non symmetric case),can be written as a product of linear forms, are considered. Also we generalize a result due to S.Kurepa for 2n-functionals in a group G.
متن کاملOn the Properties for Modifications of Classical Orthogonal Polynomials of Discrete Variables.1
We consider a modiication of moment functionals for some classical polynomials of a discrete variable by adding a mass point at x = 0. We obtain the resulting orthogonal polynomials, identify them as hypergeometric functions and derive the second order diierence equation which these polynomials satisfy. The corresponding tridiagonal matrices and associated polynomials were also studied. x1 Intr...
متن کاملمحاسبات توماس- فرمی برای تعیین خواص بحرانی ماده هستهای متقارن براساس رهیافت جرم مؤثر تعمیمیافته
Using mean-field and semi-classical approximation of Thomas-Fermi, within a statistical model, equation of state and critical properties of symmetric nuclear matter is studied. In this model, two body and phenomenological interaction of Myers and Swiatecki is used in phase space. By performing a functional variation of the total Helmholtz free energy of system with respect to the nucleonic di...
متن کاملSome Observations on Dirac Measure-Preserving Transformations and their Results
Dirac measure is an important measure in many related branches to mathematics. The current paper characterizes measure-preserving transformations between two Dirac measure spaces or a Dirac measure space and a probability measure space. Also, it studies isomorphic Dirac measure spaces, equivalence Dirac measure algebras, and conjugate of Dirac measure spaces. The equivalence classes of a Dirac ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2006 شماره
صفحات -
تاریخ انتشار 2006